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Abstract—Automated analysis of whole mount tissue sections
can provide insights into tumor subtypes and the underlying
molecular basis of neoplasm. However, since tumor sections
are collected from different laboratories, inherent technical and
biological variations impede analysis for very large datasets
such as The Cancer Genome Atlas (TCGA). Our objective is
to characterize tumor histopathology, through the delineation
of the nuclear regions, from hematoxylin and eosin (H&E)
stained tissue sections. Such a representation can then be mined
for intrinsic subtypes across a large dataset for prediction
and molecular association. Furthermore, nuclear segmentation
is formulated within a multi-reference graph framework with
geodesic constraints, which enables computation of multidimen-
sional representations, on a cell-by-cell basis, for functional
enrichment and bioinformatics analysis. Here, we present a
novel method, Multi-Reference Graph Cut (MRGC), for nuclear
segmentation that overcomes technical variations associated with
sample preparation by incorporating prior knowledge from man-
ually annotated reference images and local image features. The
proposed approach has been validated on manually annotated
samples and then applied to a dataset of 377 Glioblastoma
Multiforme (GBM) whole slide images from 146 patients. For
the GBM cohort, multidimensional representation of the nuclear
features and their organization have identified (i) statistically
significant subtypes based on several morphometric indices, (ii)
whether each subtype can be predictive or not, and (iii) that the
molecular correlates of predictive subtypes are consistent with
the literature.

Data and intermediaries for a number of tumor types (GBM,
low grade glial, and kidney renal clear carcinoma) are available
at: http://tcga.lbl.gov for correlation with TCGA molecular
data. The website also provides an interface for panning and
zooming of whole mount tissue sections with/without overlaid
segmentation results for quality control.

Index Terms—Nuclear Segmentation, Tumor Histopathology,
Subtyping, Molecular Pathology

I. INTRODUCTION

Our main motivation for quantifying morphometric compo-
sition from histology sections is to gain insight into cellular
morphology, organization, and sample tumor heterogeneity in
a large cohort. In tumor sections, robust representation and
classification can identify mitotic cells, cellular aneuploidy,
and autoimmune responses. More importantly, if tissue mor-
phology and architecture can be quantified on a very large
scale dataset, then it will pave the way for constructing
databases that are prognostic, the same way that genome-wide
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array technologies have identified molecular subtypes and
predictive markers. Genome-wide molecular characterization
(e.g., transcriptome analysis) has the advantage of standardized
techniques for data analysis and pathway enrichment, which
can enable hypothesis generation for the underlying mech-
anisms. However, array-based analysis (i) can only provide
an average measurement of the tissue biopsy, (ii) can be
expensive, (iii) can hide occurrences of rare events, and (iv)
lacks the clarity for translating molecular signature into a
phenotypic signature. Though nuclear morphology and con-
text are difficult to compute as a result of intrinsic cellular
characteristic and technical variations, histology sections can
offer insights into tumor architecture and heterogeneity (e.g.,
mixed populations), in addition to, rare events. Moreover, in
the presence of a very large dataset, phenotypic signatures
can be used to identify intrinsic subtypes within a specific
tumor bank through unsupervised clustering. This facet is
orthogonal to histological grading, where tumor sections are
classified against known grades. The tissue sections are often
visualized with hematoxylin and eosin stains, which label
DNA content (e.g., nuclei) and protein contents, respectively,
in various shades of color. Even though there are inter- and
intra- observer variations [1], a trained pathologist can charac-
terize the rich content, such as the various cell types, cellular
organization, cell state and health, and cellular secretion. If
hematoxylin and eosin (H&E) stained tissue sections can be
quantified in terms of cell type (e.g., epithelial, stromal), tumor
subtype, and histopathological descriptors (e.g., necrotic rate,
nuclear size and shape), then a richer description can be linked
with genomic information for improved diagnosis and therapy.
This is the main benefit of histological imaging since it can
capture tumor architecture.

Ultimately, our goal is to mine a large cohort of tumor data
in order to identify morphometric indices (e.g., nuclear size)
that have prognostic and/or predictive subtypes. The Cancer
Genome Atlas (TCGA) offers such a collection; however, the
main issue with processing a large cohort, is the inherent
variations as a result of (i) the sample preparation protocols
(e.g., fixation, staining), practiced by different laboratories,
and (ii) the intrinsic tumor architecture (e.g., cell type, cell
state). For example, with respect to heterogeneity in the tumor
architecture, the nuclear color in the RGB space found in
one tissue section may be similar to the cytoplasmic color
in another tissue section. Simultaneously, the nuclear color
intensity (e.g., chromatin content) can vary within a whole
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slide image. Therefore, image analysis should be tolerant and
robust, with respect to variations in sample preparation and
tumor architecture, within the entire slide image and across
the tumor cohort.

Stained whole mount tissue sections are scanned at either at
20X or 40X, which results in larger images in the order of 40k-
by-40k pixels or higher. Each image is partitioned into blocks
of 1k-by-1k pixels for processing, and cells at the borders of
each block are excluded during the processing. The details of
the computational pipeline can be found in our earlier paper
[2]. Our approach evolved from our observation that simple
color decomposition and thresholding misses or over-estimates
some of the nuclei in the image, i.e., nuclei with low chromatin
contents are excluded. Further complications ensue as a result
of diversity in nuclear size and shape (e.g., the classic scale
problem).

Fig. 1. Work flow in Nuclear Segmentation for a cohort of whole mount
tissue sections.

The general approach is shown in Figure 1, where the
primary novelty is in the image-based modeling of inherent
ambiguities that are associated with technical variations and
biological heterogeneity. Image-based modeling captures prior
knowledge from a diverse set of annotated images (e.g., a
dictionary) needed in order to model the foreground and back-
ground representations. Each annotated image is independent
of other images and signifies one facet (e.g., color space,
nuclear shape and size) of the diversity within the cohort.
Moreover, each image is represented in the feature-space
as the Gaussian Mixture Model (GMM ) of the Laplacian
of Gaussian (LoG) and RGB responses. Collectively, the
reference dictionary of annotated images provides the means
for color normalization and for capturing global statistics
for segmenting test images. The computed global statistics
can then be coupled, through a graph cut formulation, with
the intrinsic local image statistics and spatial continuity for
binarization. Having segmented an input test image, each
segmented foreground region is subsequently validated for
nuclear shape. If needed, it is decomposed through geometric
reasoning. A secondary novelty is in the details of the com-
putational pipeline. For example, we introduce the concept
of (i) “color map normalization” for registering a test image

against each of the images in the reference library, and (ii)
“blue ratio image” for mapping RGB images into the gray
space; thus, LoG responses can be computed efficiently in one
channel. All important free parameters are selected through
cross-validation. Thus far, close to 1000 whole slide images
have been processed, and the data has been made publicly
available through our website at http://tcga.lbl.gov. In addition,
segmentation results, from the whole mount tissue sections, are
available for quality control through a web-based zoomable
interface.

Essentially, nuclear segmentation provides the basis for
morphometric representation on a cell-by-cell basis. As a
result, tumor histology can be represented as a meaningful
data matrix, where well-known bioinformatics and statistical
tools can be readily applied for hypotheses generation. For
example, a large cohort facilitates tumor subtyping based on
computed morphometric features. Each subtype can then be (i)
tested for its prognostic value, and (ii) utilized for identifying
molecular basis of each subtype for hypothesis generation. In
the case of GBM, prognostic and/or predictive subtypes have
also been posted on our Web site.

Organization of this paper is as follows: Section II reviews
previous research with a focus on quantitative representation of
the H&E sections for translational medicine. Sections III and
IV describes the details of the image-based modeling for nu-
clear segmentation and experimental validation, respectively.
Section V examines one application of nuclear segmentation
of morphometric subtyping and molecular association for
hypothesis generation. Lastly, section VI concludes the paper.

II. REVIEW OF PREVIOUS WORK

Several excellent reviews for the analysis of histology
sections can be found in [3], [4]. From our perspective, four
distinct works have defined the trends in tissue histology analy-
sis: (i) one group of researchers proposed nuclear segmentation
and organization for tumor grading and/or prediction of tumor
recurrence [5], [6], [7], [8]. (ii) A second group of researchers
focused on patch level analysis (e.g., small regions) [9], [10],
[11], using color and texture features, for tumor representa-
tion. (iii) A third group focused on block-level analysis to
distinguish different states of tissue development using cell-
graph representation [12], [13]. (iv) Finally, a fourth group
has suggested detection and representation of the auto-immune
response as a prognostic tool in cancer [14]. In contrast
to previous research, our strategy is based on processing a
large cohort of tumors, to compute morphometric subtypes,
and to examine whether computed subtypes are predictive of
outcome. Since tumor histology is characterized in terms of
nuclear and cellular features, a more detailed review of nuclear
segmentation strategies follows.

The main barriers in nuclear segmentation are technical
variations (e.g., fixation) and biological heterogeneity (e.g.,
cell type). These factors are visible in TCGA dataset. Present
techniques have focused on adaptive thresholding followed
by morphological operators [15], [16]; fuzzy clustering [17],
[18]; level set method using gradient information [14], [19];
color separation followed by optimum thresholding and learn-
ing [20], [21]; hybrid color and texture analysis followed by
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learning and unsupervised clustering [6]; and representation of
nuclei organization in tissues [22], [23] that is computed from
either interactive segmentation or a combination of feature
detector. Some applications combine the above techniques;
Several examples are given below. In [24], iterative radial vot-
ing [25] was used to estimate seeds for partitioning perceptual
boundaries between neighboring nuclei. Subsequently, seeds
were used to segment each nucleus through the application
of multiphase level sets [26], [27]. In [28], the input image
was initially binarized into foreground and background regions
with a graph cut framework, the seeds were then selected
from a binarized image using a constrained multi-scale LoG
filter, with the combined results being refined using a second
iteration of the graph cut. Similarly, in [29], the input
image was first normalized through histogram equalization,
and then binarized based on color-texture extracted from
the most discriminant color space. This was followed by an
iterative operation to split touching nuclei based on concave-
points and radial-symmetry. In their experiment, they had
21 images where 5 of them were annotated. Nuclei, in all
images, had similar size with high chromaticity. Recently, a
spatially constrained expectation maximization algorithm [30]
was demonstrated to be robust to “color nonstandardness” in
histological sections with color being represented in the HSV
space. However, our analysis of the GBM cohort indicates
that strict incorporation of color and spatial information will
not be sufficient as demonstrated in Section IV B (MRGC
vs MRGC-CF). A more related work, described in [31], was
based on a voting system that uses multiple classifiers built
from different reference images; we will refer to this method
as MCV, for short, in the rest of the paper. Compared to the
previous approaches, MCV provides a better way to handle
the variation among different batches. However, due to the
lack of smoothness constraints and local statistical informa-
tion, the classification results can be noisy and erroneous, as
demonstrated in Figure 8. Some of these concepts have also
been utilized in our earlier paper [2], but the results posted
on our website are for the current implementation outlined in
this paper.

In summary, the main limitations of the above techniques
are that they are often applied to a small dataset that originate
from a single laboratory, ignore technical variations that are
manifested in both nuclear and background signals, and are in-
sensitive to cellular heterogeneity (e.g., variation in chromatin
contents). Our goal is to address these issues by processing
whole mount tissue sections, from multiple laboratories, to
construct a large database of morphometric features, and to
enable subtyping and genomic association.

III. APPROACH

Details of the proposed approach are shown in Figure 2,
which leverages several key observations for segmenting nu-
clear regions: (i) global variations across a large cohort of
tissue sections can be captured by a representative set of
reference images, (ii) local variations within an image can
be captured by local foreground(nuclei)/background samples
detected by LoG filter, and (iii) color normalization, against

a reference image, reduces variations in image statistics and
batch effects between a test and a reference image. These
concepts are integrated within a graph cut framework to
delineate nuclei or clumps of nuclei from the background.
Having performed foreground and background segmentation,
we then partitioned potential clumps of nuclei through geomet-
ric reasoning. In the rest of this section, we summarize (a) the
representation of prior models from a diverse set of reference
images, (b) the methodology for color normalization, (c) an
effective approach for color transformation for dimensionality
reduction, (d) the details of feature extraction from each
test image, (e) the multi-reference graph cut formalism for
nuclei/background separation, and (f) the partitioning of a
clump of nuclei into individual nucleus.

A. Construction and Representation of Priors

The purpose of this step is to capture the global variations
for an entire cohort from a reference library. For bioinformatics
analysis, the target dataset consists of 377 individual tissue
sections, and a representative of N (N = 20) reference images
of 1k-by-1k pixels at 20X have been selected. Each reference
image is selected to be an exemplar of tumor phenotypes
based on staining and morphometric properties. Therefore, it
is reasonable to suggest that each reference image has its own
unique feature space, in terms of RGB and LoG responses,
which leads to 2N feature spaces for all reference images:

{F
1
RGB1

, F2
RGB2

, ···, FN
RGBN

, FN+1
LoG1

, FN+2
LoG2

, ···, F2N
LoGN

} (1)

where F
i
RGBi

and F
N+i
LoGi

are RGB feature space and LoG
feature space for the ith reference image, 1 ≤ i ≤ N .
Subsequently, each reference image is hand segmented and
processed with a LoG filter (please refer to Section III-C
for the details on our LoG integration), at a single scale,
followed by the collection of foreground (nuclei) and back-
ground statistics in both the RGB space and LoG response.
Our experience indicates that even within a single reference
image, there could be distinct modes in terms of RGB color
and nuclear size. One way to capture these heterogeneities
is to represent foreground and background distributions with
GMM . Hence, the conditional probability for pixel p, with
feature fk(p) in the kth (k ∈ [1, 2N ]) feature space, belonging
to Nuclei(l = 1)/Background(l = 0) can be expressed as a
mixture with D component densities:

GMMk
l (p) =

D
∑

j=1

p̃(fk(p)|j)P (j) (2)

where a mixing parameter P (j) corresponds to the weight of
component j and

∑D
j=1 P (j) = 1. Each mixture component

is a Gaussian with mean µ and covariance matrix Σ in the
corresponding feature space (e.g., 3-by-3 and 1-by-1 matrices
in RGB and single scale LoG spaces, respectively):

p̃(fk(p)|j) =
1

(2π)
3

2 |Σ|
1

2

j

(3)

· exp
(

−
1

2
(fk(p) − µj)

T Σ−1
j (fk(p) − µj)

)
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Fig. 2. Steps in Nuclear Segmentation.

P (j) and (µj , Σj) for p̃(Cp|j) were estimated by expectation
maximization (EM ) algorithm [32].

B. Color Normalization

The purpose of color normalization is to close the gap,
in color space, between an input test image and a reference
image. As a result, the prior models, constructed from each
reference image, can be better utilized. We evaluated a number
of color normalization methods and chose the color map nor-
malization described in [31] for its effectiveness in handling
histological data. Let

• input image I and reference image Q have KI and KQ

unique color triplets in terms of (R, G, B), respectively;
• R

I/Q
C be a monotonic function, which maps the color

channel intensity, C ∈ {R, G, B}, from Image I/Q to a
rank that is in the range [0, KI)/[0, KQ);

• (rp, gp, bp) be the color of pixel p, in image I , and
(RI

R(rp), R
I
G(gp), R

I
B(bp)) be the ranks for each color

channel intensity; and
• the color channel intensity values rref , gref and bref ,

from image Q, have ranks:

R
Q
R(rref ) = b

R
I
R(rp)

KI
× KQ +

1

2
c

R
Q
G(gref ) = b

R
I
G(gp)

KI
× KQ +

1

2
c

R
Q
B(bref ) = b

R
I
B(bp)

KI
× KQ +

1

2
c

As a result of color map normalization, the color for pixel
p: (rp, gp, bp), will be normalized as (rref , gref , bref ). In
contrast to standard quantile normalization, which utilizes all
pixels in the image, color map normalization is based on the
unique color in the image, thereby, excluding the frequency of
any color. Our experience suggests that this method is quite
powerful for normalizing histology sections, since the color
frequencies vary widely as a result of technical variations and
tumor heterogeneity. Examples of color map normalization can
be found in Figure 2.

C. Color transformation

In order to reduce the computational complexities for in-
tegrating the LoG responses, the RGB space is transformed
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(a) (b) (c)

Fig. 3. (a) Two diverse pinhole of tumor signatures; (b) Decompositions
by [33]; (c) Blue ratio images.

into a gray level image to accentuate the nuclear dye. While
several techniques for color decomposition have been pro-
posed [34], [33], they are either too time-consuming or do
not yield favorable outcomes. The color transformation policy
needs to enhance the nuclear stain while attenuating the
background stain. One way to realize such a transformation
is by: BR(x, y) = 100∗B(x,y)

1+R(x,y)+G(x,y) ×
256

1+B(x,y)+R(x,y)+G(x,y) ,
where B(x, y), R(x, y) and G(x, y) are the blue, red and green
intensities at position (x, y). We refer to this transformation as
the blue ratio image in the rest of this manuscript. In this for-
mulation, the first and second terms accentuate and attenuate
nuclear and background signals, respectively. Subsequently,
the LoG responses are always computed at a single scale from
the blue ratio image. Figure 3 demonstrates that the blue ratio
image method has an improved performance compared to an
alternative method [33].

D. Feature Extraction

Our approach integrates both color and scale information,
where the scale is encoded by the LoG response.

1) Normalization of the input test image against every
reference image, as described in Section III-B;

2) Conversion of each normalized image into the blue ratio
image, as described in Section III-C;

3) Application of a LoG filter on each of the blue ratio
images, at a single scale; and

4) Representation of each pixel, from the test image, by its
RGB color in each of the normalized images and LoG
response from each of the blue ratio images.

As a result, each pixel in the test input image is represented
by 2N features, where the first N features are RGB colors
from the normalized images, and the last N features are LoG
responses computed from the blue ratio of the normalized
images. All 2N features are assumed to be independent
per selection of images in Section III-A. The rational for
integrating both color and scale information is that: (i) in some
cases, color information is insufficient to differentiate nuclear
regions from background; (ii) the scales (e.g., LoG responses)
of the background structure and nuclear region are typically
different; and (iii) the nuclear region responds well to blob
detectors, such as a LoG filter [28].

E. Multi-Reference Graph Cut Model

In this section, we first present the background material on
graph cut formalism, and then proceed to the details of the
image-based modeling for incorporating intrinsic and extrinsic
variations.

Within the graph cut formulation, an image is represented
as a graph G = 〈V̄ , Ē〉, where V̄ is the set of all nodes, and
Ē is the set of all arcs connecting adjacent nodes. Usually, the
nodes and edges correspond to pixels (P) and their adjacency
relationship, respectively. Additionally, there are special nodes
known as terminals, which correspond to the set of labels that
can be assigned to pixels. In the case of a graph with two
terminals, the terminals are referred to as the source (S) and
the sink (T), which correspond to specific labels. The labeling
problem is to assign a unique label xp (0 for background, and
1 for foreground) for each node p ∈ V̄ , and the image cutout
is performed by minimizing the Gibbs energy E [35]:

E =
∑

p∈V̄

Efitness(xp) + β
∑

(p,q)∈Ē

Esmoothness(xp, xq) (4)

Where Efitness(xp) is the likelihood energy, encoding the data
fitness cost for assigning xp to p, and Esmoothness(xp, xq) is
the prior energy, denoting the cost when the labels of adjacent
nodes, p and q, are xp and xq , respectively; β is the weight
for Esmoothness.

The optimization algorithms could be classified into two
groups: Goldberg-Tarjan “push-relabel” methods [36], and
Ford-Fulkerson “augmenting paths” [37]. The details of the
two methods can be found in [38].

We recognize that the training data set cannot fully capture
the intrinsic variations of the nuclear signature. Therefore, the
data fitness term is expressed as a combination of the intrinsic
local probability map and learned global property map. The
local probability map has the advantage of capturing local
intrinsic image property in the absence of colormap normal-
ization, thus, diversifying the data fitness term. Equation 4 is
rewritten as

E =
∑

p∈V̄

(

Egf (xp) + Elf (xp)
)

+β
∑

(p,q)∈Ē

Esmoothness(xp, xq)

(5)
where Egf is the global data fitness term encoding the fitness
cost for assigning xp to p, Elf is the local data fitness term
encoding the fitness cost for assigning xp to p. Each term
together with the optimization process is discussed below.

1) Global fitness term: The global fitness is established
based on manually annotated reference images. Let’s assume
N reference images: Qi, i ∈ [1, N ], and for each reference im-
age, GMMs are used to represent the nuclei and background
in both RGB space and LoG response space, respectively:
GMMk

Nuclei, GMMk
Background, in which k ∈ [1, 2N ], and

the first N GMMs are for RGB space, and the last N
GMMs are for LoG response space. Details can be found
in III-A.

An input test image I is first normalized as Ui with respect
to every reference image, Qi. Subsequently, RGB color and
LoG responses of Ui are collected to construct 2N features
per pixels, where the first N features are from the normalized
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color(RGB) space, and the second N features are from LoG
response. Let

• p be a node corresponding to a pixel;
• fk(p) be kth feature of p;
• α be the weight of LoG response;
• p

k
i be the probability function of fk being Nuclei(l =

1)/Background(l = 0):

p
k
l (p) =

GMMk
l (p)

∑1
j=0 GMMk

j (p)

• λi be the weight for Qi:

λi =
1

3

C∈{R,G,B}
∑

C

λC
i

λC
i = HC(Qi) · H

C(Ui)/(||HC(Qi)|| · ||H
C(Ui)||)

where ||.|| is L2 norm, HC(·) is the histogram function
on a single color channel C ∈ {R, G, B} of an image.
Intuitively, λ measures similarity between two histograms
derived from Qi and Ui, which are represented with
20 bins. Based on our experiments, the λs become
stable when the number of bins reaches 20; conversely,
histograms with less than 20 bins are considered to have
insufficient resolution. The similarity parameter weighs
the fitness of the prior model, constructed from Qi, to
the features extracted from the normalized image Ui.

The global fitness term is now defined as

Egf (xp = i) = −

N
∑

k=1

λklog(pk
i (fk(p))) (6)

−α ·

2N
∑

k=N+1

λk−N log(pk
i (fk(p)))

where the first and second terms integrate normalized color
features and LoG responses, respectively.

2) Local Fitness Term: While the global fitness term uti-
lizes both color and LoG information in the normalized space,
it does not utilize information in the original color space
of the input image. As a result, local variation may be lost
for a number of reasons, i.e., non-uniformity in the tissue
sections, local lesions, etc. The local data fitness of a pixel, p,
is computed from foreground and background seeds in a local
neighborhood around p that corresponds to peaks detected by a
LoG filter on the blue ratio image, where positive and negative
peaks often, but not always, correspond to the background
and foreground (nuclei), respectively. The accuracy can be
improved by a cascade of filters as follows:

1) Seeds detection: This step aims to collect local fore-
ground and background seeds by incorporating local and
global image statistics. Typical positive and negative
peak responses, associated with the LoG filter, are
shown in Figure 4(a). Most of the time, the LoG filter
detects foreground and background locations correctly,
but there is a potential for errors. The protocol consists
of three steps:

(a)

(b)

Fig. 4. (a) An example of the LoG response for detection of foreground
(green dot) and background (blue dot) signals indicates an excellent perfor-
mance on the initial estimate; (b) Histogram of the blue ratio intensity derived
from image (a) indicates that the peak of the distribution corresponds to the
occurrence frequency of the background pixels.

a) Create a blue ratio image (Section III-C): In this
transformed space, the peak of the intensity his-
togram always corresponds to the preferred fre-
quency of the background intensity as shown in
Figure 4(b).

b) Construct distributions of the foreground and back-
ground: Apply the LoG filter on the blue ratio
image, detect peaks, and construct a distribution of
the blue ratio intensity at the peaks corresponding
to the negative and positive LoG responses. A
small subset of seeds can be mislabeled, but most
can be corrected in the following step.

c) Constrain the seed selection: Seeds (e.g., peaks of
the LoG response) are constrained by three criteria:
(i) the LoG responses must be above a minimum
conservative threshold for removing strictly noisy
artifacts; (ii) the intensity associated with the peak
of the negative LoG responses (e.g., foreground
peaks) must concur with the background peak,
specified in step (a); and (iii) within a small
neighborhood of w1 ×w1, the minimum blue ratio
intensity, at the location of negative seeds, is set
as the threshold for background peaks, as shown
in Figure 5.

2) Local foreground/background color modeling: For each
pixel, p, foreground and background statistics within a
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Fig. 5. LoG responses can be either positive (e.g., potential background)
or negative (e.g., foreground or part of foreground) in the transformed blue
ratio image. In the blue ratio image with the most negative LoG response,
the threshold is set at the minimum intensity.

(a) (b) (c)

Fig. 6. (a) Eight-neighborhood system: nG = 8; (b) Contour on eight-
neighborhood 2D grid; (c) One family of lines formed by edges of the graph.

local neighborhood, w2 × w2, is represented by two
GMMs in the original color space. These GMMs cor-
respond to the nuclei and background models (e.g.,
GMMLocal

Nuclei and GMMLocal
Background), respectively.

The local fitness term is defined as:

Elf (xp = i) = −γlog(pl(f(p))) (7)

where f(p) refers to the RGB feature of node p in the original
color space, γ is the weight for local fitness, pl is the proba-
bility function of f being Nuclei(l = 1)/Background(l = 0):

pl(p) =
GMMLocal

l (p)
∑1

j=0 GMMLocal
j (p)

3) Smoothness Term: While both local and global data
fitness terms are encoded by t-links (links between node
and terminals) in the graph, the smoothness term, which
ensures the smoothness of labeling between adjacent nodes, is
represented by n-links (links between adjacent nodes). Here,
we adopt the setup from [39] for n-links, which approximates a
continuous Riemannian metric by a discrete weighted graph so
that the max-flow/min-cut solution for the graph corresponds
to a local geodesic or minimal surface in the continuous case.
Consider a weighted graph constructed in III-E: G = 〈V̄ , Ē〉,
where V̄ is the set of image pixels, and Ē is the set of all
edges connecting adjacent pixels. Let,

• {ek|1 ≤ k ≤ nG} be a set of vectors for the neighbor-
hood system, where nG is the neighborhood order, and
the vectors are ordered by their corresponding angle φk

w.r.t. the +x axis, such that 0 ≤ φ1 < φ2 · ·· < φnG < π.
For example, when nG = 8, we have e1 = (1, 0),
e2 = (1, 1), e3 = (0, 1), e4 = (−1, 1), as shown in
Figure 6(a);

• wk be the weight for the edge between pixels: p and q,
where p and q belong to the same neighborhood system,
and ~pq = ±ek;

• L be a line formed by the edges in the graph, as shown
in Figure 6(c);

• C be a contour in the same 2D space where the graph G
is embedded, as shown in Figure 6(b);

• |C|G be the cut metric of C:

|C|G =
∑

e∈ĒC

we

where ĒC is the set of edges intersecting contour C;
• |C|R be the Riemannian length of contour C; and,
• D(p) be the metric(tensor), which continuously varies

over points p in the 2D Riemannian space;

Based on Integral Geometry [40], the Crofton-style formula
for Riemannian length |C|R of contour C can be written as,

∫

detD(p)

2(uT
L · D(p) · uL)

3

2

nCdL = 2|C|R

where uL is the unit vector in the direction of the line L,
and nC is a function that specifies how many times line L
intersects contour C. Following the approach in [39], the
local geodesic can be approximated by the max-flow/min-
cut solution (|C|G → |C|R) with the following edge weight
setting:

wk(p) =
δ2 · |ek|

2 · ∆φk · detD(p)

2 · (eT
k · D(p) · ek)

3

2

(8)

where, δ is the cell-size of the grid, 4φk is the angular
difference between the kth and (k + 1)th edge lines, 4φk =
φk+1 − φk, and

D(p) = g(|∇I |) · I + (1 − g(|∇I |)) · u · uT (9)

where u = ∇I
|∇I| is a unit vector in the direction of image gradi-

ent at point p, I is the identity matrix, and g(x) = exp(− x2

2σ2 )

Edge Weight For

p → S Egf (xp = 1) + Elf (xp = 1) p ∈ P
p → T Egf (xp = 0) + Elf (xp = 0) p ∈ P

we(p, q) β · wk(p)
{p, q} ∈ N,
φ−→pq ∈ {φk, π + φk}

TABLE I
EDGE WEIGHTS FOR THE GRAPH CONSTRUCTION, WHERE N IS THE

NEIGHBORHOOD SYSTEM, AND β IS THE WEIGHT FOR SMOOTHNESS.

4) Optimization: The construction of the graph, with two
terminals, source S and sink T, is defined in Table I. This graph
is partitioned via the max-flow/min-cut algorithm proposed in
[41] to label the input image into foreground and background.
The optimization method belongs to a class of algorithms
based on augmenting paths, and the details can be found in
[41].

F. Nuclear Mask Partitioning

A key observation we made is that the nuclear shape
is typically convex. Therefore, ambiguities associated with
the delineation of overlapping nuclei could be resolved by
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detecting concavities and partitioning them through geometric
reasoning. The process, shown in Figure 7, consists of the
following steps:

1) Detection of Points of Maximum Curvature: The con-
tours of the nuclear mask were extracted, and the
curvature along the contour was computed by using
k = x′y′′−y′x′′

(x′2+y′2)3/2
, where x and y are coordinates of the

boundary points. The derivatives were then computed by
convoluting the boundary with derivatives of Gaussian.
An example of detected points of maximum curvature
is shown in Figure 7.

2) Delaunay Triangulation (DT) of Points of Maximum
Curvature for Hypothesis Generation and Edge Re-
moval: DT was applied to all points of maximum cur-
vature to hypothesize all possible groupings. The main
advantage of DT is that the edges are non-intersecting,
and the Euclidean minimum spanning tree is a sub-
graph of DT. This hypothesis space was further refined
by removing edges based on certain rules, e.g., no
background intersection.

3) Geometric reasoning: Properties of both the hypothesis
graph (e.g, degree of vertex), and the shape of the object
(e.g., convexity) were integrated for edge inference.

This method is similar to the one proposed in our previous
work [42]; however, a significant performance improvement
has been made through triangulation and subsequent geometric
reasoning. Please refer to [43] for details.

Fig. 7. Steps in the delineation of overlapping nuclei: (Top row) identifying
points of maximum curvature where potential folds are formed, (middle
row) formation of partitioning hypotheses through triangulation, (bottom row)
stepwise application of geometric constraints for deleting and pruning edges.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we (i) discuss parameter setting, and (ii)
evaluate performance of the system against previous methods.

A. Experimental design and parameter setting

In order to capture the technical variation, we manually
selected and annotated 20 reference images of the size of

(a) Reference image (b) Test image

(c) Results via MCV (d) Results via MRGC

Fig. 8. A comparison between MCV and MRGC (as shown in (c) and (d),
respectively) based on the same reference image, as shown in (a). Even though
the test image and the reference image are slightly different in color space,
compared with MCV, MRGC still produces 1) more accurate classification,
due to the encoding of statistics from test image’s color space via local
probability map; 2) less noisy classification due to the smoothness constrain.

Fig. 9. A subset of reference image ROI, with manual annotation overlaid as
green contours, indicating significant amounts of technical variation. Nuclei
with white hollow regions inside are pointed out by arrows.

1k-by-1k pixels at 20X, and a subset is shown in Figure 9.
Nuclear segmentation was also performed at 20X, and only
the top M = 10 reference images with the highest weight
of λ were used. Essentially, this was a trade-off between
performance and computational time cost (see in Figure 13).
The number of components for GMM was selected to be
D = 20, while the parameters for GMM were estimated
via EM algorithm. Other parameter settings were: α = 0.1,
β = 10.0, γ = 0.1, w1 = 100, w2 = 100, and σ = 4.0 (the
scale for both seeds detection and LoG feature extraction),
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(a) (b) (c)

(d) (e) (f)

Fig. 10. A comparison among our approach, MCV, and random forest.
(a) Original image patch; (b) Detected seeds, Green: Nuclei region; Blue:
background; (c) Local Nuclei Probability established based on seeds; (d)
Classification by our approach; (e) Classification by MCV; (f) Classification
by Random forest.

(a) (b)

Fig. 11. Segmentation on low chromatin nuclei. (a) Original image patch;
(b) Segmentation by our approach.

in which σ was determined based on the preferred nuclear
size at 20X, w1 was selected to minimize the seeds detec-
tion error on the annotated reference images, and all other
parameters were selected to minimize the cross validation error
from the following discretization: D ∈ {5, 10, 15, 20, 25, 30},
α ∈ {0.05, 0.10, ..., 0.95, 1.00}, β ∈ {5, 10, ..., 95, 100},
γ ∈ {0.05, 0.10, ..., 0.95, 1.00}, w2 ∈ {50, 60, ..., 190, 200}.
The optimal γ value is relatively small, which can be attributed
to the fact that the global statistics from the well-constructed
reference images, cover most of the heterogeneity in our
dataset, and the role of local statistics is simply to assist the
global statistics with improved discriminating powers.

B. Evaluation

Two-fold cross validation, with optimized parameter set-
tings, was applied to the reference images, and a comparison

Fig. 13. Top and bottom rows show average classification performance and
computational time as a function of number of reference images used. It is
clear that the top M = 10 reference images with highest λ is a reasonable
trade-off between performance and computational time.

Approach Precision Recall F-Measure
MRGC-MS
(Multi-Scale LoG) 0.77 0.82 0.794

MRGC 0.79 0.78 0.785
MRGC-CF
(Color Feature Only) 0.72 0.83 0.771
MRGC-GF
(Global Fitness Only) 0.80 0.71 0.752
Our Previous approach 0.78 0.65 0.709

MCV 0.69 0.75 0.719
Random Forest 0.59 0.76 0.664

TABLE II
COMPARISON OF AVERAGE CLASSIFICATION PERFORMANCE AMONG OUR

APPROACH(MRGC), OUR PREVIOUS APPROACH [2], MCV APPROACH IN
[31], AND RANDOM FOREST. FOR MCV, ONLY COLOR IN RGB SPACE IS

USED, WHICH IS IDENTICAL TO [31]. FOR RANDOM FOREST, THE SAME

FEATURES ARE USED: {R,G,B,LoG}, AND THE PARAMETER SETTINGS

ARE: ntree = 100, mtry = 2, node = 1.

of average classification performance was made between our
approach, random forest [44], and the most related work (Here,
we refer it to MCV: multi-classifier voting, for short) in [31],
as shown in Table II. Our experiment indicates that

1) By incorporating both global and local statistics (MRGC
vs MRGC-GF), our system better characterizes the vari-
ation in the data.

2) By incorporating the LoG response as a feature (MRGC
vs MRGC-CF), we can encode the prior scale informa-
tion into the system. As a result, ambiguous background
structures are excluded, which leads to an increase of

Approach Precision Recall F-Measure

MRGC 0.75 0.85 0.797
Our previous approach 0.63 0.75 0.685

TABLE III
COMPARISON OF AVERAGE SEGMENTATION PERFORMANCE BETWEEN

OUR CURRENT APPROACH(MRGC), AND OUR PREVIOUS APPROACH [2],
IN WHICH precision = #correctly segmented nuclei

#segmented nuclei
, AND

recall = #correctly segmented nuclei

#manually segmented nuclei
.
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precision. However, there is also a decrease in the recall
when compared to MRGC-CF, which is due to the fact
that the tiny fragments inside the nuclei, as indicated by
Figure 9, can also be eliminated.

3) MRGC with multi-scale LoG features (MRGC-MS) has
the best performance. We evaluated LoG responses
at three scales, σ ∈ {2, 4, 6}, to compensate for a
wide variation in the nuclear size. Improvement in
segmentation is marginal, and it comes with a significant
increase in the computational cost of about 40%. The
LoG filter is simply used for seed detection to represent
the underlying image statistics, and as long as a single
scale can provide sufficient statistics, multiscale LoG is
redundant. Besides, in processing whole slide images,
computational throughput is an important factor.

We also provide an intuitive example, shown in Figure 10,
demonstrating the effectiveness of the local probability map.
It is clear that the local probability map (Figure 10(c)) helps
to characterize nuclei with the low chromatin content, as
shown in the blue bounding boxes. Another example, shown
in Figure 11, further demonstrates the effectiveness of our
approach on the segmentation of low chromatin nuclei.

Finally, a comparison of the segmentation performance
between our current approach and our previous approach [2] is
indicated in Table III, where the correct nuclear segmentation
is defined as follows. Let

• MaxSize(a, b) be the maximum nuclear size of nuclei
a and b, and

• Overlap(a, b) be the amount of overlap between nuclei
a and b.

Subsequently, for any nucleus, nG, from ground truth, if there
is one and only one nucleus, nS , in the segmentation result,
that satisfies Overlap(nG ,nS)

MaxSize(nG,nS) > T , then nS is considered to
be a correct segmentation of nG. The threshold was set to be
T = 0.8.

The reader may question the classification performance
since both precision and recall are not very high. The major
reason is that the ground truth (annotation) for the reference
images is created at the object (nucleus) level, which means the
hollow regions (loss of chromatin content for various reasons)
inside the nuclei will be marked as the nuclear region rather
than the background, as indicated by Figure 9.

V. ANALYSIS OF TCGA GBM COHORT

Having evaluated the performance of the system, we applied
our method to a cohort of 377 GBM whole slide images, from
146 patients, for bioinformatics analysis. Figure 12 shows a
few snapshots of our classification and segmentation results;
Complete results for all the GBM tissue sections (and a few
other tumor types) are available through the NIH web site
at http://tcga-data.nci.nih.gov/tcga/. Following segmentation,
each nucleus is represented by a multidimensional feature
vector, which includes over 52 morphometric indices such
as nuclear size, cellularity, cytoplasmic features, etc., [2].
The density distribution of each index is then computed per
histology section and aggregated per patient.

A particular aspect of bioinformatics analysis relies on
subtyping based on a subset of computed morphometric in-
dices (e.g., cellular density), where subtyping is performed
through consensus clustering [45], [46]. In our experiment,
we evaluated all morphometric indices and discovered that
subtyping based on (i) nuclear size and cellularity, and (ii)
nuclear intensity and gradient, are statistically stable, where
four and two subtypes were inferred, respectively. Figure 14
shows the computed subtypes based on nuclear size and cellu-
larity, where one of the subtypes is predictive of the outcome
based on the clinical data. In addition, the computed subtypes
from nuclear intensity and gradient were also predictive of
the outcome. The patients in the GBM cohort received one
of the two types of therapies (i) an intensive therapy with
either concurrent radiation and chemotherapy, or 4 or more
cycles of chemotherapy only, or (ii) a less intensive therapy of
either non-concurrent radiation and chemotherapy or less than
4 cycles of chemotherapy only [47]. Although the sample size
for the patient receiving the less intensive therapy is small,
survival analyses [48] for one of the subtypes in each of
the clustering experiments points to a trend in an improved
survival for patients receiving the more intensive therapy, as
shown in Figure 15. We also examined molecular correlates
of the predictive subtypes. With respect to predictive subtype
computed from nuclear size and cellularity indices, we used
moderated t-test [49] and identified a set of differentially
regulated transcripts for subtype 2 (e.g., predictive subtype)
as shown in Figure 16. A total of 10 differentially regulated
transcripts were then subject to further bioinformatics analysis
for subnetwork enrichment analysis using Pathway Logic,
which computes and ranks hubs according to their p-values,
as shown in Table IV(e.g., IL1, IL6), which impacts tumor
proliferation and migration in both normal and malignant cells
[50], [51] and the recruitment of the immune response. The
relationships between these hubs and the genes associated with
them are shown in Figure 17. Among the common regulators,
MAPK1 and FN1, which are involved in the proliferation,
are highly ranked transcripts in TCGA’s gene tracker for
GBM. Furthermore, FN1 is (i) implicated in the invasion
and angiogenesis, and (ii) validated as differentially expressed
transcripts in GBM versus benign tumors [52]. Finally, TGFB1
is well known to be involved in tumor maintenance and
progression through suppression of the immune response and
is abundantly produced by GBM [53]. These molecular asso-
ciations reflect that morphometric subtyping can hypothesize
relevant transcripts that are potential targets of therapy, which
is consistent with current literature. An example being, FN1,
and its role in the induction of angiogenesis. With respect to
the predictive subtype computed from nuclear intensity and
gradient indices, subnetwork enrichment analysis revealed a
large number of hubs from a set of differentially regulated
transcripts. In this case, VEGF was discovered to be at the
intersection of all pathways curated through enrichment anal-
ysis. VEGF is well known to be the hallmark of glioblastoma
for the induction of microvasculture formation [54] and has
been suggested as a therapuetic target in GBM [55].
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Hub name p-value

IL1A 0.0003
MAPK1 0.0005

FN1 0.0005
TNF 0.003

TGBF1 0.009
IL6 0.03

TABLE IV
KEY HUBS IDENTIFIED THROUGH PATHWAY ENRICHMENT ANALYSIS.
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Fig. 14. Morphometric subtyping reveals four subtypes based on cellularity
index and nuclear area: (a) visualization of consensus clustering with four
clusters; and (b) distribution of cellularity index per subtype.

VI. CONCLUSION

We have shown that morphometric representation of cellular
architecture from a large cohort of histology sections can
provide new opportunities for hypothesis generation. The main
barriers are the batch effect and tumor heterogeneity which
hinders nuclear segmentation. However, through image-based
modeling, technical and tumor variations can be captured
for robust nuclear segmentation from whole slide images.
Subsequently, segmented nuclei and corresponding computed
morphometric representation enables characterization of tu-
mor histopathology. Our approach for nuclear segmentation
addresses technical and biological variations by (i) utilizing
global information from a diverse set of annotated reference
images, (ii) normalizing the test image against the reference
images in the color space, and (iii) incorporating local varia-
tions in the test image. Segmentation is formulated within a
graph cut framework with geodesic constraint for improved
accuracy of the nuclear boundaries. The method has been
validated against annotated data and applied to a large dataset
of GBM tumor cohort to identify subtypes as a function
of cellularity and nuclear size. One of these subtypes is
shown to have an increase in survival as a result of a more
aggressive therapy with an underlying molecular signature that
is consistent with invasiveness and proliferation.
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Fig. 12. Classification and segmentation results indicates tolerance to intrinsic variations: (a) Original images; (b) Nuclear/Background classification results
via our approach(MRGC); (c) Nuclear partition results via geometric reasoning.


